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System Frequency Response

Describe the behaviour of the system by how it responds to sinusoidal inputs

sin(ωt) G(s) ???

Key take-home:

• The output is a sinusoid of a same frequency with a phase shift of ∠G(jω) and a
magnitude of |G(jω)|

Why important?

• Very useful method to experimentally capture the dynamics of a system
• Common control objectives expressed in terms of frequency requirements
• Can determine closed-loop behaviour, from open-loop frequency response
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The Math

Suppose we have a system with a transfer function G(s), and we drive it with the
input signal u(t) = sin(ωt).

To make things simple, drive the system with the complex signal:

u(t) := ejωt

The output is

Y (s) = G(s)U(s)

= G(s)
1

s− jω

= c0 +
c1

s− p1
+

c2
s− p2

+ · · ·+ cn
s− pn

+
c

s− jω

where {pi} are the unique, simple poles of G(s)1

1Assume for now that G only has simple poles that are all different from jω
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Computing the Steady-State Response

The response to ejωt is

y(t) = c0δ(t) + c1e
p1t + · · ·+ cne

pnt + cejωt

If G(s) is stable, then for sufficiently large t, this will tend to

y(t) = cejωt

Compute c in the standard fashion:

c = lim
s→jω

(s− jω)G(s)U(s)

= lim
s→jω

(s− jω)G(s)
1

s− jω

= G(jω)
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Steady-State Response

Use superposition to get the response to u(t) = sin(ωt)

u(t) = sin(ωt) =
1

2j

(
ejωt − e−jωt

)
For large t we have that

y(t) =
1

2j

(
G(jω)ejωt −G(−jω)e−jωt

)
=

|G(jω)|
2j

(
ej∠G(jω)ejωt − e−j∠G(jω)e−jωt

)
=

|G(jω)|
2j

(
ej(∠G(jω)+ωt) − e−j(∠G(jω)+ωt)

)
= |G(jω)| sin(ωt+ ∠G(jω))

If the input is a sinusoid at frequency ω, the output is a sinusoid at the same frequency,
with the magnitude scaled by |G(jω)| and the phase shifted by ∠G(jω).
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Example

Consider the system ÿ(t) + 1.1ẏ(t) + 0.1y(t) = u(t) diven by u(t) = sin(1.3t)

The output is

Y (s) = G(s)U(s) =
1

(s+ 1)(s+ 0.1)
· 1.3

s2 + 1.32

=
−0.54

s+ 1
+

0.85

s+ 0.1
− 0.31s+ 0.45

s2 + 1.32

Taking the inverse transform we get the time response

y(t) = −0.54e−t + 0.85e−0.1t − 0.31 cos(1.3t)− 0.45 sin(1.3t)

= −0.54e−t + 0.85e−0.1t + 0.47 sin(1.3t− 2.41)

Note that

G(j1.3) = −0.35− 0.31j = 0.47e−2.41j

1Recall that B cos(ω0t) + C sin(ω0t) = A sin(ω0t + ϕ), where ϕ = tan−1
(

C
B

)
and A =

√
B2 + C2
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Example

y(t) = −0.54e−t + 0.85e−0.1t + 0.47 sin(1.3t− 2.41)

0 10 20 30 40 50 60
−1

−0.5

0

0.5

1

y(t)

Time (sec)

Only the sinusoid counts in the long-term.
Initial response is called the transient reponse, the long-term is called the
steady-state response
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Frequency Response

The frequency response of the transfer function G(s) is the function G(jω)

• If any of the poles are unstable, Re pi > 0, then the transient will not die-out

lim
t→∞

|e−pit| = ∞

• If any poles are on the imaginary axis, pi = jωi, then their response will not die
out either, but will tend to a sinusoid with a frequency of ωi.

In these cases, the frequency response is still well-defined, but it no longer defines
the steady-state response!
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Complex Sinusoidal Inputs

Phase shifted input

u(t) = sin(ωt+ ϕ)

What is y(t)?

Change of variables τ = t+ ϕ
ω

u(τ) = sin(ωτ)

⇒ y(τ) = |G(jω)| sin(ωτ + ∠G(jω))

Undoing change of variables gives

y(t) = |G(jω)| sin(ωt+ ϕ+ ∠G(jω))

Idea: Which time is ‘zero’ doesn’t matter when we’re talking about a signal running
infinitely far into the past and into the future
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Example

u(t) = sin(2π/3t) + 1.2 sin(πt+ 0.3) + 0.8 sin(2π/5t+ 0.4)

What’s the steady-output of a system with transfer function G(s), if the system has all
poles in the left half plane?

Superposition gives:

y(t) = |G(j2π/3)| sin(2π/3t+ ∠G(j2π/3))

+ 1.2 |G(jπ)| sin(πt+ 0.3 + ∠G(jπ))

+ 0.8 |G(j2π/5)| sin(2π/5t+ 0.4 + ∠G(j2π/5))
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Example

Consider the simple system

G(s) =
1

s2 + 0.5s+ 1

Impulse response

0 2 4 6 8 10 12 14 16 18 20 22

−0.5

0

0.5

Time (sec)

O
ut
pu

ty

Expect the transient phase to die out around 15 seconds.
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Example

sin(2π/3t)
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Example
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Visualizing the Frequency Response



Visualization: Bode Plot
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Bode Plots

1. Magnitude plot |G(jω)|
• Plotted in decibels 20 log10(|G(jω)|)
• X-axis is frequency, usually rad/sec, but sometimes Hz
• Value above 0 → the output is larger than the input
• Value below 0 → the output is smaller than the input
• All physical systems will tend to −∞ decibels as ω → ∞

2. Phase plot ∠G(jω)

• Generally shown in degrees
• X-axis is frequency, usually rad/sec, but sometimes Hz
• Value above 0 → phase advance
• Value above 0 → phase lag
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Bode Plots

• Easy to generate directly from data
• Much can be said from a ‘glance’

• Gain at specific frequencies obvious
• Resonance frequencies
• Bandwidth
• Stability in closed-loop
• etc

• Commonly used for control design
• Control objectives commonly described using Bode plot
• Can be generalized to multi-input / multi-output systems
• ‘Easy’ to sketch manually
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Nyquist Diagram
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• Generally used for more theoretical analysis
• e.g., robust stability, robust performance, etc

• Significantly more complex to draw
• We could spend weeks learning this...
• I’ll just say “Use a computer” - nyquist(G)
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Example: Atomic Force Microscope



Atomic Force Microscope

1Image: Wikipedia
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Atomic Force Microscope: Student Experiment 2

Adjustment

Manual X
Manual Y

Focusing Lens Nanocube

Manual Z

Detector

Laser

Return Lens

Sample

Cantilever

Microscope

Laser

D

Fig. 1: Photo of the AFM

components save for one, while that in [2] requires several
more custom-built parts and electronics. The commercial
components in the proposed device lead to a fast build time
and easy maintenance without an increase in cost. Second,
the AFM developed at MIT is designed around a specialized
interdigitated cantilever, which must be custom made at one
of the few fabrication labs available to academics, such as
the one at MIT. Because such a lab was not available to the
authors, or indeed to most control academics, the AFM was
designed to use standard, inexpensive and reliable commercial
probes.1
The remainder of the paper is split into two sections.

Section II provides an overview of the microscope and its
basic functions. Section III covers the lab that is currently
running at the University of Cambridge using the developed
device, in which students go through an entire controller
design procedure from modeling to implementation and finally
to using their controllers to take scans of various materials.

II. ATOMIC FORCE MICROSCOPE

A. Principles of Atomic Force Microscopy
An AFM functions by dragging a sharp pin, mounted on

a beam (the cantilever) back and forth over a sample. As it
moves, the contours of the sample cause the cantilever to bend
up and down, and by measuring the height of the cantilever,
the surface features of the sample can be determined. The
AFM works because this height can be measured with extreme
accuracy – down to a resolution of a few picometers on a
commercial AFM. This resolution is achieved by bouncing a
laser off the tip of the cantilever, which is a polished mirror.
The angle of the reflected laser changes as the cantilever bends,

1The authors of [2] provide fabrication instructions and indicate on their
website [3] that the National Nanotechnology Infrastructure Network (NNIN)
may be able to provide microfab facilities for academic use. They also offer
interested educators small quantities of the interdigitated probes at a nominal
cost.

and the position of the reflected laser spot on a detector is pro-
portional to the height of the sample and inversely proportional
to the length of the cantilever. This inverse proportionality
gives the AFM its resolution, since the cantilever is produced
using photolithography, and is generally only a few microns
long.
The class of instruments called AFMs contain many varia-

tions on this theme. In particular, the tip of the cantilever is
generally never in contact with the surface of the sample, but
instead is held close enough that it is effected by the strong
atomic force of the sample (hence the name). This lab uses the
crudest approach, in which the tip is in direct contact with the
surface and as a result the resolution is significantly lower than
that which can be achieved on a commercial AFM. However,
even this crude instrument is capable of measuring features on
the sub-micron scale.
The geometry of a simple AFM is shown in Fig. 2; note that

the scale is off by several orders of magnitude. As the height
of the sample changes and the cantilever moves upwards by
a distance h, the laser’s angle of reflection θ changes and
the laser moves along the detector by a distance r. Some
simple computations show that the position r of the laser on
the detector as a function of the change in height h of the
cantilever is

r =
2l(D + d cos(θ))h + 2d sin(θ)h2

cos(δ)l2 − cos(δ)h2 + 2 sin(δ)lh
, (1)

whereD is the distance between the cantilever and the detector
and δ is the misalignment angle between the detector and the
incoming laser. Note that the height h is much smaller than
the length of the cantilever l (nanometers vs microns), and the
distance D between the detector and the cantilever is several
orders of magnitude larger than the length of the cantilever l.
As a result, one can accurately approximate (1) with the linear
relation

r ≈ 2D

l
h ≈ 2000 · h , (2)
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Generating a Bode Plot: Method 1

Drive the system with the input u(t) = sin(ωit) for several ωi’s

57 58 59 60 61 62

−0.5

0

0.5

ω = 2π10 |G(jω)| = 7.96 · 10−1 ∠G(jω) = −3.03

20



Generating a Bode Plot: Method 1

Drive the system with the input u(t) = sin(ωit) for several ωi’s
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Generating a Bode Plot: Method 1

Drive the system with the input u(t) = sin(ωit) for several ωi’s
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Generating a Bode Plot: Method 1

Drive the system with the input u(t) = sin(ωit) for several ωi’s
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Generating a Bode Plot: Method 1

Drive the system with the input u(t) = sin(ωit) for several ωi’s
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Generating a Bode Plot: Method 1

Drive the system with the input u(t) = sin(ωit) for several ωi’s
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Generating a Bode Plot: Method 1

Drive the system with the input u(t) = sin(ωit) for several ωi’s
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Generating a Bode Plot: Method 1

Drive the system with the input u(t) = sin(ωit) for several ωi’s
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Generating a Bode Plot: Method 1

Drive the system with the input u(t) = sin(ωit) for several ωi’s
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Generating a Bode Plot: Method 1

Drive the system with the input u(t) = sin(ωit) for several ωi’s
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Generating a Bode Plot: Method 1

Drive the system with the input u(t) = sin(ωit) for several ωi’s
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Generating a Bode Plot: Method 1

Drive the system with the input u(t) = sin(ωit) for several ωi’s
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ω = 2π8000 |G(jω)| = 3.06 · 10−3 ∠G(jω) = −1.55
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Put Sampled Points on Plot
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Problem: Need a *lot* of points to get a good fit
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Better: Frequency Sweep

Sweep from f0Hz to ffHz in ts seconds

u(t) = cos(ϕ(t))
dϕ(t)
dt = f0

(
f0
ff

)t/ts
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Output in Response to the Frequency Sweep
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Obtaining the Frequency Response Experimentally

Recall the definition of frequency response:

G(jω) =
Y (jω)

U(jω)

and note that Y (jω) is the discrete-time Fourier transform of y(k). We just compute
the Fourier transform of y(k) and u(k), and take their difference
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Interpreting the Frequency Response

G(s) =
8.88 · 108(s2 + 780s+ 1.69 · 106)

(s+ 3000)(s+ 1000)(s+ 100)(s2 + 50s+ 6.25 · 106)
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Recall: Sketching Bode Plots



Matlab Commands

The computer way: Grid ω, compute and plot.
sys = tf([1 0],[1 -0.4 2]); % Define system
bode(sys); % Show bode plot
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Sketching Ratio of Polynomials on a Log-Scale

Sketch Bode plot of continuous-time system G(s)

G(s) = c
(s+ z1)(s+ z2)

s(s+ p1)(s+ p2)

Goal: Sketch G(jω)

For any ω we have a complex number in the form

G(jω) =
s1s2
s3s4s5

=
r1e

jθ1r2e
jθ2

r3ejθ3r4ejθ4r5ejθ5
=

r1r2
r3r4r5

ej(θ1+θ2−θ3−θ4−θ5)

So the magnitude is linear in a log-scale, and the phase is linear

20 log10 |G(jω)| = 20 log10 r1 + 20 log10 r2 − 20 log10 r3 − 20 log10 r4 − 20 log10 r5

∠G(jω) = θ1 + θ2 − θ3 − θ4 − θ5
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Write in Bode Form

Convert to Bode form

G(jω) = c0(jω)
n (jωτ1 + 1)(jωτ2 + 1) · · ·
(jωτa + 1)(jωτb + 1) · · ·

Example:

G(s) = 15s−1 (τ1s+ 1)(τ2s+ 1)

(τ3s+ 1)(τ4s+ 1)

The magnitude then of the form

20 log10 |G(jω)| = 20 log10 15 + 20 log10 |jωτ1 + 1|+ 20 log10 |jωτ2 + 1|

− 20 log10 |jωτ3 + 1| − 20 log10 |jωτ4 + 1|
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Standard Elements

All transfer functions are made of three types of terms

1. K0(jω)
n

2. (jωτ + 1)±1

3.
[(

jω

ωn

)2

+ 2ζ
jω

ωn
+ 1

]±1
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Integrator / Pole at Zero K0(jω)
n

Magnitude

20 log10 |K0(jω)
n| = 20 log10 |K0|+ n20 log10 |jω|

This is a straight line with slope of n× (20 decibels per decade).

Phase

∠K0(jω)
n = n× 90◦

The phase is constant everywhere. Each integrator drops the phase by 90◦, and each
zero at zero increases it by 90◦

30



Simple pole / zero (jωτ + 1)±1

Magnitude 20 log10 |jωτ + 1|

• ωτ ≪ 1 → jωτ + 1 ≊ 1

• ωτ ≫ 1 → jωτ + 1 ≊ jωτ

Example: jω10 + 1
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Simple pole / zero (jωτ + 1)±1

Phase ∠(jωτ + 1)

• ωτ ≪ 1 → ∠1 = 0◦

• ωτ ≊ 1 → ∠(jωτ + 1) ≊ 45◦

• ωτ ≫ 1 → ∠jωτ = 90◦

Example: jω10 + 1
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Second-order term
[(

jω

ωn

)2

+ 2ζ
jω

ωn
+ 1

]±1

Magnitude
Very similar to first-order term, with breakpoint at ω = ωn

• ω
ωn

≪ 1 →
(

jω
ωn

)2

+ 2ζ jω
ωn

+ 1 ≊ 1

• ω
ωn

≫ 1 →
(

jω
ωn

)2

+ 2ζ jω
ωn

+ 1 ≊
(

jω
ωn

)2

The magnitude around the crossover frequency is impacted by the damping ratio

|G(jωn)| =

∣∣∣∣∣
(
jωn

ωn

)2

+ 2ζ
jωn

ωn
+ 1

∣∣∣∣∣
n

= |−1 + 2ζj + 1|n

= |2ζ|n

So for the most common case of n = −1 (a resonant pole) we have

|G(jωn)| ≊
1

2ζ
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Second-order term
[(

jω

ωn

)2

+ 2ζ
jω

ωn
+ 1

]±1

Magnitude
Very similar to first-order term, with breakpoint at ω = ωn

• ω
ωn

≪ 1 →
(

jω
ωn

)2

+ 2ζ jω
ωn

+ 1 ≊ 1

• ω
ωn

≫ 1 →
(

jω
ωn

)2

+ 2ζ jω
ωn

+ 1 ≊
(

jω
ωn

)2

The magnitude around the crossover frequency is impacted by the damping ratio

|G(jωn)| =

∣∣∣∣∣
(
jωn

ωn

)2

+ 2ζ
jωn

ωn
+ 1

∣∣∣∣∣
n

= |−1 + 2ζj + 1|n

= |2ζ|n

So for the most common case of n = −1 (a resonant pole) we have

|G(jωn)| ≊
1

2ζ
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Second order terms

Phase

G(jω) =

(
jω

ωn

)2

+ 2ζ
jω

ωn
+ 1

• ω ≪ ωn → ∠1 = 0◦

• ω ≊ ωn → ∠j2 + 2ζj + 1 = 90◦

• ω ≫ ωn → ∠
(
jω

ωn

)2

= 180◦
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Second-Order Poles / Zeros

G(jω) =
1

(jω/ωn)2 + 2ζ(jω/ωn) + 1
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Second-Order Poles / Zeros G(w) = 1
(w/ωn)2+2ζ(w/ωn)+1

db
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• Damping ζ

→ transient-response overshoot (approx 1/2ζ for ζ < 0.5)
→ peak in frequency response magnitude

• Natural frequency ωn

→ approximately equal to bandwidth
→ proportional to the rise time
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Unstable Poles and Non-minimum Phase Zeros

What happens if the pole/zero is in the right half plane?

G1(jω) = jωτ + 1 G2(jω) = jωτ − 1

Magnitude

|G1(jω)| = |G2(jω)|

Magnitude is the same

Phase

• ωτ ≪ 1 → ∠G1(jω) = 0◦ ∠G2(jω) = 180◦

• ωτ ≊ 1 → ∠G1(jω) ≊ 45◦ ∠G2(jω) ≊ 135◦

• ωτ ≫ 1 → ∠G1(jω) = 90◦ ∠G2(jω) = 90◦

Phase goes in the opposite direction for RHP poles / zeros
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Understanding Bode Plots

Magnitude

• Each zero increases the slope by 20dB/dec
• Each pole decreases the slope by 20dB/dec
• Complex poles/zeros have a resonant peak; larger with lower damping ratio
• Physical systems must have a negative slope as ω → ∞

• Slope changes occur at pole/zero locations

Phase

• Negative zero → 90◦, positive zero → −90◦

• Negative pole → −90◦, positive pole → 90◦

• Physical systems must have a negative phase as ω → ∞

• Phase changes begin/end ∼ 1/2 decade before/after poles/zeros
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Three Indicative Examples

1. G(s) =
2000(s+ 0.5)

s(s+ 10)(s+ 50)

2. G(s) =
10

s(s2 + 0.4s+ 4)

3. G(s) =
s− 1

s+ 1

Detailed summary of plots on Moodle (and in exercises)
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Summary



Summary

The steady-state output of a linear system in response to a sinusoid is a sinusoid of the
same frequency with a phase shift of:

• ∠G(jω) and a magnitude of |G(jω)|

Why important?

• Very useful method to experimentally capture the dynamics of a system
• Common control objectives expressed in terms of frequency requirements
• Can determine closed-loop behaviour, from open-loop frequency response

In coming weeks we will use the Bode plot of the open-loop system to:

• Compute key metrics defining the robustness of the system
• Shape the response of closed-loop system by ‘modifying’ the bode plot with a

controller
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