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System Frequency Response

Describe the behaviour of the system by how it responds to sinusoidal inputs

sin(wt) —  G(s) —— 777

Key take-home:
= The output is a sinusoid of a same frequency with a phase shift of ZG(jw) and a
magnitude of |G(jw)|
Why important?

= Very useful method to experimentally capture the dynamics of a system
= Common control objectives expressed in terms of frequency requirements

= Can determine closed-loop behaviour, from open-loop frequency response



The Math

Suppose we have a system with a transfer function G(s), and we drive it with the
input signal u(t) = sin(wt).

To make things simple, drive the system with the complex signal:

! Assume for now that G only has simple poles that are all different from jw



The Math

Suppose we have a system with a transfer function G(s), and we drive it with the
input signal u(t) = sin(wt).

To make things simple, drive the system with the complex signal:

The output is

s — jw
C1 C2 Cn C
4+

=co+ + +—
S—p1 S — P2 S — DPn S — Jw

where {p;} are the unique, simple poles of G(s)*

! Assume for now that G only has simple poles that are all different from jw



Computing the Steady-State Response

The response to e?“" is

y(t)2005(t)+clep1t+...+ ePrt 4 ced®t

If G(s) is stable, then for sufficiently large ¢, this will tend to

y(t) = ce’™’



Computing the Steady-State Response

The response to e?“" is

y(t)2005(t)+clep1t+...+ ePrt 4 ced®t

If G(s) is stable, then for sufficiently large ¢, this will tend to
y(t) = e’

Compute ¢ in the standard fashion:

c= lim (s — jw)G(s)U(s)

s—jw

— lim (s — jw)G(s) —

s—=jw S —jw

= G(jw)



Steady-State Response

Use superposition to get the response to u(t) = sin(wt)

1 ; w
u(t) = sin(wt) = 2% <ej“’t —e’ t)
For large t we have that

w0 = 3= (Gl = G(=ju)e ™)

_ \G(zjfdﬂ (ejzcumejwt B eszc(jwefjwt)
J

_ 1GGw)l <ej<46<1w>+m> _e—juG(jw)wt))
2j

= |G(jw)|sin(wt + LG (jw))



Steady-State Response
Use superposition to get the response to u(t) = sin(wt)

1 o .
u(t) = sin(wt) = — (e“t —e ]“’t)
23
For large t we have that

y(t) = % (G(jw)ej“" — G(—jw)e‘“’*)

G (W)l (ejzcuw)ea‘wt _

=
Gw)l

_ LYWl <ej<zc<gw>+m> _ (;Mcuwnm)
2j

6fjAG(jw>efjwt>

= |G(jw)|sin(wt + LG (jw))

If the input is a sinusoid at frequency w, the output is a sinusoid at the same frequency,
with the magnitude scaled by |G(jw)| and the phase shifted by ZG(jw).



Consider the system §j(t) + 1.1y(t) + 0.1y(¢) = wu(t) diven by u(t) = sin(1.3¢)

!Recall that B cos(wot) + C'sin(wot) = Asin(wot + ¢), where ¢ = tan~! (£) and A = VB2 + C?



Consider the system §j(t) + 1.1y(t) + 0.1y(¢) = wu(t) diven by u(t) = sin(1.3¢)
The output is

1 1.3
V() =GOUE) = Copsron) 2118
054 085  0.3ls+0.45

s+1 " s+01  s2+1.32

Taking the inverse transform we get the time response

y(t) = —0.54e" +0.85¢” " — 0.31 cos(1.3t) — 0.45 sin(1.3t)
= —0.54¢"" 4 0.85¢" %" 4 0.47sin(1.3t — 2.41)

Note that

G(j1.3) = —0.35 — 0.315 = 0.47¢~>*Y

!Recall that B cos(wot) + C'sin(wot) = Asin(wot + ¢), where ¢ = tan~! (£) and A = VB2 + C?



y(t) = —0.54e " +0.85¢~ %" + 0.47sin(1.3t — 2.41)

y(t)

-1 | | | | | |
0 10 20 30 40 50 60

Time (sec)




y(t) = —0.54e " +0.85¢~ %" + 0.47sin(1.3t — 2.41)

0.47sin(1.3t — 2.41)

1 | | | | | L
0 10 20 30 40 50 60

Time (sec)

Only the sinusoid counts in the long-term.
Initial response is called the transient reponse, the long-term is called the
steady-state response



Frequency Response

The frequency response of the transfer function G(s) is the function G(jw)

= If any of the poles are unstable, Rep; > 0, then the transient will not die-out

lim

e Pt =00
t—o0 }

= If any poles are on the imaginary axis, p; = jw;, then their response will not die
out either, but will tend to a sinusoid with a frequency of w;.

In these cases, the frequency response is still well-defined, but it no longer defines
the steady-state response!



Complex Sinusoidal Inputs

Phase shifted input

u(t) = sin(wt + ¢)

What is y(t)?



Complex Sinusoidal Inputs

Phase shifted input
u(t) = sin(wt + ¢)
What is y(t)?
Change of variables 7 =t 4 £
u(1) = sin(wT)
= y(7) = |G(jw)|sin(wr + LG (jw))
Undoing change of variables gives

y(t) = |G(jw)| sin(wt + ¢ + LG (jw))



Complex Sinusoidal Inputs

Phase shifted input
u(t) = sin(wt + ¢)
What is y(t)?
Change of variables 7 = ¢ + £
u(1) = sin(wT)
= y(7) = |G(jw)|sin(wr + LG (jw))
Undoing change of variables gives

y(t) = |G(jw)| sin(wt + ¢ + LG (jw))

Idea: Which time is ‘zero’ doesn't matter when we're talking about a signal running
infinitely far into the past and into the future



u(t) = sin(27/3t) + 1.2 sin(nwt + 0.3) 4+ 0.8 sin(27 /5t + 0.4)

What's the steady-output of a system with transfer function G(s), if the system has all
poles in the left half plane?
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u(t) = sin(27/3t) + 1.2 sin(nwt + 0.3) 4+ 0.8 sin(27 /5t + 0.4)

What's the steady-output of a system with transfer function G(s), if the system has all
poles in the left half plane?
Superposition gives:
y(t) =|G(j2n7/3)|sin(27 /3t + LG (527/3))
+ 1.2|G(jm)|sin(wt + 0.3 + ZG(j7))
+ 0.8 |G(527/5)|sin(27 /5t + 0.4 + LG (j27/5))

10



Consider the simple system
1

Gl) = F08s 71

Impulse response
T T T T T T T T T T T
0.5 i
D
5
2 0
3
(©)
—0.5 |- .
| | | | | | | | | | |
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Time (sec)

Expect the transient phase to die out around 15 seconds.



sin(27/3t) G(j27/3)| sin(27 /3t + LG(j27/3))
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Visualizing the Frequency Response



Visualization: Bode Plot
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Bode Plots

1. Magnitude plot |G(jw)|
= Plotted in decibels 20log;,(|G(jw)|)
= X-axis is frequency, usually rad/sec, but sometimes Hz
= Value above 0 — the output is larger than the input
= Value below 0 — the output is smaller than the input
= All physical systems will tend to —oo decibels as w — oo

2. Phase plot ZG(jw)
= Generally shown in degrees
= X-axis is frequency, usually rad/sec, but sometimes Hz
= Value above 0 — phase advance
= Value above 0 — phase lag

15



Bode Plots

= Easy to generate directly from data
= Much can be said from a ‘glance’

= Gain at specific frequencies obvious
= Resonance frequencies

= Bandwidth

= Stability in closed-loop

= etc

= Commonly used for control design
= Control objectives commonly described using Bode plot
= Can be generalized to multi-input / multi-output systems

= ‘Easy’ to sketch manually

16



Nyquist Diagram
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= Generally used for more theoretical analysis

= e.g., robust stability, robust performance, etc
= Significantly more complex to draw

= We could spend weeks learning this...

= 'l just say “Use a computer” - nyquist (G)



Example: Atomic Force Microscope




Atomic Force Microscope

Detector and
Feedback

Electronics

Photodiode

, Laser

—_—
Sample SurfaE Cantilever & Tip
. PZT Scanner

1|mage: Wikipedia
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Atomic Force Microscope: Student Experiment

Laser
Adjustm
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Generating a Bode Plot: Method 1

Drive the system with the input u(¢) = sin(w;t) for several w;'s

NARNARNARRAT

0.57

VIRV A I A
57 58 59 60 61 62
w = 2710 |G (jw)| = 7.96-107" /G (jw) = —3.03

20



Generating a Bode Plot: Method 1

Drive the system with the input u(¢) = sin(w;t) for several w;'s

11.4 11.6 11.8 12 12.2 12.4

w = 2750 |G(jw)| =7.14-10"" /G (jw) = —2.63

20



Generating a Bode Plot: Method 1

Drive the system with the input u(¢) = sin(w;t) for several w;'s

0.5

5.7 5.8 5.9 6 6.1 6.2

w = 27100 |G(jw)| = 5.61-107" £G(jw) = —2.26

20



Generating a Bode Plot: Method 1

Drive the system with the input u(¢) = sin(w;t) for several w;'s

0.5

o

0.57 0.58 0.59 0.6 0.61 0.62

w = 271000 |G(jw)| = 3.92- 1072 /G (jw) = —1.35
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Generating a Bode Plot: Method 1

Drive the system with the input u(¢) = sin(w;t) for several w;'s

0.5

o

0.38 0.385 0.39 0.395 0.4 0.405 0.41 0.415

w = 271500 |G(jw)| = 3.16 - 1072 LG (jw) = —2.11

20



Generating a Bode Plot: Method 1

Drive the system with the input u(¢) = sin(w;t) for several w;'s

o

0.285 0.29 0.295 0.3 0.305 0.31

w = 272000 |G(jw)| = 6.80 - 1072 £G(jw) = —2.33
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Generating a Bode Plot: Method 1

Drive the system with the input u(¢) = sin(w;t) for several w;'s
1r-
0.5
0
-0.51-
-1
0. 23 0. 235 0. 24 0. 245 0. 25

w = 272498 |G(jw)| = 1.33 £G(jw) = —0.85
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Generating a Bode Plot: Method 1

Drive the system with the input u(¢) = sin(w;t) for several w;'s

0.5

o

0.19 0.192 0.194 0.196 0.198 0.2 0.202 0.204 0.206 0.208

w = 273000 |G(jw)| = 6.16 - 1072 £G(jw) = —0.84

20



Generating a Bode Plot: Method 1

Drive the system with the input u(¢) = sin(w;t) for several w;'s

0.142 0.144 0.146 0.148 0.15 0.152 0.154 0.156

w = 274000 |G(jw)| = 1.67- 1072 /G (jw) = —1.07

20



Generating a Bode Plot: Method 1

Drive the system with the input u(¢) = sin(w;t) for several w;'s

AL
VI

0.095 0.096 0.097 0.098 0.099 O. 0.101 0.102 0.103 0.104

= |
=
=l
=

w = 276000 |G(jw)| = 5.25-107° £G(jw) = —1.40

20



Generating a Bode Plot: Method 1

Drive the system with the input u(¢) = sin(w;t) for several w;'s

ﬂﬂﬂﬂﬂﬂﬁﬁﬁﬁ
Y

0.081 0.082 0.083 0.084 0.085 0.086 0.087 0.088 0.089

0.

U'I

o

|
o
01

w = 27000 |G(jw)| = 3.54-107° £G(jw) = —1.50
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Generating a Bode Plot: Method 1

Drive the system with the input u(¢) = sin(w;t) for several w;'s

AAAALLAS
TN RLL

0.071 0.072 0.073 0.074 0.075 0.076 0.077 0.078

0.

U'I

o

|
o
3]

w = 278000 |G(jw)| = 3.06 - 107° £G(jw) = —1.55

20



Put Sampled Points on Plot

10

Gain (dB)

200 T T T
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0 I I I
0 1 102 3 4
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Problem: Need a *lot* of points to get a good fit
21



Better: Frequency Sweep

Sweep from foHz to ffHz in ts seconds

u(t) = cos(6(1) WD g (2
10 ﬁ w n
I

| | |

0 2 4 6 8 10
Time (seconds)
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Output in Response to the Frequency Sweep

10
5 -
H
= 0
(@]
-5
_10 Il Il Il Il Il Il Il Il Il
0 5 10 15 20 25 30 35

40 45 50
Time (seconds)
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Obtaining the Frequency Response Experimentally

Recall the definition of frequency response:

Y(jw)
U(jw)

G(jw) =

and note that Y (jw) is the discrete-time Fourier transform of y(k). We just compute
the Fourier transform of y(k) and w(k), and take their difference

Magnitude (db)
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-4001
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|
[o)]
o
o
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! 10° 10° 10*

Frequency (rad/s)

=
o
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Interpreting the Frequency Response

8.88 - 10% (s 4 780s + 1.69 - 10°)

G(s) = (s + 3000)(s + 1000)(s 4 100)(s® + 50s + 6.25 - 10°)

—_ O ‘

o)

T 20t

(0]

S -40r

S -60f

©

= _got 1 ]
E
$ -200¢

@ -400F
8
= -600F R

101 102

Frequency (rad/s)
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Recall: Sketching Bode Plots




Matlab Commands

The computer way: Grid w, compute and plot.

sys = tf([1 0],[1 -0.4 2]); % Define system
bode(sys); ¢ Show bode plot

|
)
S
T

Magnitude (dB)

|
©
S

—135 -
—180 |-

Phase (deg)

—225 -

7270 . r | [
107! 10° 10"

Frequency rad/sec
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Sketching Ratio of Polynomials on a Log-Scale

Sketch Bode plot of continuous-time system G(s)
(s+21)(s + 22)
G(s) =c—+—%
)= oG+ p)
Goal: Sketch G(jw)

For any w we have a complex number in the form

J01 jo2
. 5152 T1€ T2€ T17T2 (0 O —02—04—0=
G(jw) = _ _ el (01+602—03—04—05)

$38455 raeif3r eifarseifs r3TaTs

So the magnitude is linear in a log-scale, and the phase is linear

201log,, |G(jw)| = 201logyq r1 + 20log,, r2 — 20log, rs — 20log,, ra — 201log,, 5
£LG(jw) =01+ 02 — 03 — 04 — 05

27



Write in Bode Form

Convert to Bode form

(jUJTl -+ 1)(jw72 -+ 1) cee
(jwTa + 1) (Jwrs + 1) - -

G(jw) = co(jw)"

Example:

(ris+1)(12s+ 1)

() = 155 s D)

The magnitude then of the form

201log,, |G(jw)| = 201og,, 15 + 201og,, |jwrt + 1| + 201og,, |jwTs + 1|
—201log, [jwrs + 1] — 201log; [jwTs + 1

28



Standard Elements

All transfer functions are made of three types of terms

1. Ko(jw)’n,
2. (Jwr+1

. 2 .
3. [(W) +2¢7 11
w”l wn

)il

+1

29



2

Integrator / Pole at Zero K;(jw)"

Magnitude
201log; ¢ | Ko(jw)"| = 201ogq | Ko| + n20log, |jw|

This is a straight line with slope of n x (20 decibels per decade).

Phase
ZKo(jw)™ =n x 90°

The phase is constant everywhere. Each integrator drops the phase by 90°, and each
zero at zero increases it by 90°

30



Simple pole / zero (jwr +1)*!

Magnitude 201og,, |jwT + 1|

n o wr K1 —

= wr > 1 —

Example: jwl0+ 1

Jwr+1=1

JjwT + 1% jwr

Break point
100 l // 40
— 10.0 20
; |Gl=1.4
3 14 > 3
= 1.0 0
Asymptotes
0.1 —20
0.01 0.1 1.0 10 100 1000
 (rad/sec)

db
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Simple pole / zero (jwr +1)*!

Phase /(jwt + 1)

" wrT K1 — /1 =0°
 wr 1 — Z(jwT + 1) = 45°
. WT > 1 — 4]&)7‘ — 900
Example: jwl0 + 1
Break point 11° ymptote
90° ——
- ///T
: v | |
S 30 .
3, 7
: 0° | | 7 [ [Asymptote

—30°
0.01 0.02 0.1 02 04 1
 (rad/sec)
Copitt 62015 Paaon Ecation, s e 2



Second-order term

Magnitude
Very similar to first-order term, with breakpoint at w = w,,

. 2 .
SIS T (i—“) +2cie 121

Wn,

. 2 . . 2
s =1 o (&) sl 1s (i)

Wn
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Second-order term

Magnitude
Very similar to first-order term, with breakpoint at w = w,,

. 2 .
SIS T (M) +2cie 121

Wn Wn

. 2 . 2
s =1 o (&) sl 1s (i)

Wn Wn

The magnitude around the crossover frequency is impacted by the damping ratio

G (Goon)| = ’(f) N QCM 1

n

n

=|-1+2¢ +1"
= [2¢]"

So for the most common case of n = —1 (a resonant pole) we have

o) A
|G (jown)| = 2

33



Second order terms

Phase

. 2 .
G(jw) = (E) +2g]wﬁ +1

n

n WK Wy — /1 =0°
/3% 4+2¢5+1=90°

+

W Wy

. 2
RS <ﬁ> — 180°

Wn,
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Second-Order Poles / Zeros

L 1
CUW) = Gafon)® T 2t Gafan) T 1

iy | g |

N 0.05 §§\ | ..
N SN\
y/(oz -0 FETTE \u: 02

: ANt P A

N | 05
| ———T\\\ 0 —60
08 \\\\ \\\\\

. AN
=20 —120°

Magnitude
=
£

2
7
db
Phase
|
&
2

01
0.08 “
0.06 ~\
0.04
\\ ~150° ~
0.02 \\
N \\§§§
—————
0.01 —180°
0.1 0.2 04 06 081 2 4 6 810 0.1 0.2 0.4 06 081 2 4 6 8 10
wl, oo,
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U\ =— 1
Second-Order Poles / Zeros G(w) = Y LE= T cry s

0 2 20 =
6 1.8 0.1 N
: b ERIZNZ2 T
2 = Ay
1 0 0.6
08 12 LR AN
2 o £ 30 10 / /
o N
7% -
g%(g) 2 06 // /§§§ 07 L / \
0.04 04 1.0 / \
0.2
0.02 . \
“UIUI 0.2 04 06 081 2 4 6 810 0 2 4 6 8 10 12
wlo, w,t
= Damping ¢

— transient-response overshoot (approx 1/2¢ for ¢ < 0.5)
— peak in frequency response magnitude

= Natural frequency wy,
— approximately equal to bandwidth
— proportional to the rise time
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Unstable Poles and Non-minimum Phase Zeros

What happens if the pole/zero is in the right half plane?

G1(jw) = jwr + 1 G2(jw) = jwr — 1
Magnitude
|G (jw)| = |G2(jw)]
Magnitude is the same

Phase
s wr K1 — G (jw) =0° LG (jw) = 180°
" wr Rl — ZG1(jw) = 45° LG (jw) = 135°
s wrs>1 o ZGi(jw) =90°  ZGa(jw) = 90°

Phase goes in the opposite direction for RHP poles / zeros
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Understanding Bode Plots

Magnitude

= Each zero increases the slope by 20dB/dec

= Each pole decreases the slope by 20dB/dec

= Complex poles/zeros have a resonant peak; larger with lower damping ratio
= Physical systems must have a negative slope as w — oo

= Slope changes occur at pole/zero locations
Phase

= Negative zero — 90°, positive zero — —90°

= Negative pole — —90°, positive pole — 90°

Physical systems must have a negative phase as w — oo

= Phase changes begin/end ~ 1/2 decade before/after poles/zeros

38



Three Indicative Examples

2000(s + 0.5)

L GO = 37005+ 50)
10

2. Gls) = s(s2+0.4s+4)

3. G(s) = j;i

Detailed summary of plots on Moodle (and in exercises)
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Summary




The steady-state output of a linear system in response to a sinusoid is a sinusoid of the
same frequency with a phase shift of:

= /G(jw) and a magnitude of |G (jw)|

Why important?

= Very useful method to experimentally capture the dynamics of a system
= Common control objectives expressed in terms of frequency requirements

= Can determine closed-loop behaviour, from open-loop frequency response

In coming weeks we will use the Bode plot of the open-loop system to:

= Compute key metrics defining the robustness of the system

= Shape the response of closed-loop system by ‘modifying’ the bode plot with a
controller
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